Snowmass EF02: 2HDM Meeting

Implication of Higgs Precision Measurements on 2HDMs

Wei Su

1709.06103 J.Gu, H.Li, Z.Li, S.Su, WS
1808.02037 N. Chen, T. Han, S. Su, WS, Y. Wu
1912.01431 N. Chen, T. Han, S. Li, S. Su, WS, Y. Wu

Outline

- *Higgs Precision Measurements
- *2HDM: brief introduction
- Tree-level results
- *Loop-level results
- **Summary

Precision: Higgs couplings

CEPC-CDR, FCC-ee, ILC Operating Scenarios

collider	CEPC	F	CC-ee	ļ		II C									
\sqrt{s}	$240\mathrm{GeV}$	$240\mathrm{GeV}$	365 ($\overline{\text{GeV}}$	250 G HL	LHC:	1902.0	0134							
$\int \mathcal{L}dt$	5.6 ab^{-1}	5 ab^{-1}	1.5 a	ab ⁻¹	2 a	$\sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1} \text{ per experim}$									
production	Zh	Zh	Zh	$ u \bar{ u} h$, , ,	 						
$\Delta\sigma/\sigma$	0.5%	0.5%	0.9%	_	0.7		Total	_	AT	ATLAS and CMS					
decay				$\overline{\Delta(\sigma \cdot }$	BR)/		- Statistic		HL-L	LHC Projection					
$h o b ar{b}$	0.27%	0.3%	0.5%	0.9%	0.4		- Experim	lentai							
$h o c \bar{c}$	3.3%	2.2%	6.5%	10%	2		- Theory			Uncertainty [%]					
h o gg	1.3%	1.9%	3.5%	4.5%	2	2%	4%			Tot Stat Exp Th					
$h \to WW^*$	1.0%	1.2%	2.6%	3.0%	$\frac{1}{1} \sigma_{g}^{\gamma}$	Y I				2.5 1.3 1.7 1.1					
$h \to \tau^+ \tau^-$	0.8%	0.9%	1.8%	8.0%	1 1	Jgn F									
$h o ZZ^*$	5.1%	4.4%	12%	10%	6.4%	28.0%	22.4%	8.8%	3.0%						
$h \rightarrow \gamma \gamma$	6.8%	9.0%	18%	22%	12.0%	43.6%	50.3%	12.0%	6.8%						
$h o \mu^+ \mu^-$	17%	19%	40%	_	25.5%	97.3%	178.9%	30.0%	25.0%						
$(\nu\bar{\nu})h o b\bar{b}$	2.8%	3.1%	_	_	3.7%	_	_	_	_	3					

2HDM: Brief Introduction

Two Higgs Doublet Model

$$\Phi_i = \begin{pmatrix} \phi_i^+ \\ (v_i + \phi_i^0 + iG_i)/\sqrt{2} \end{pmatrix} \quad v_u^2 + v_d^2 = v^2 = (246 \text{GeV})^2 \\ \tan \beta = v_u/v_d$$

$$v_u^2 + v_d^2 = v^2 = (246 \text{GeV})^2$$

 $\tan \beta = v_u/v_d$

$$\begin{pmatrix} H^0 \\ h^0 \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_1^0 \\ \phi_2^0 \end{pmatrix}, \quad A = -G_1 \sin \beta + G_2 \cos \beta \\ H^{\pm} = -\phi_1^{\pm} \sin \beta + \phi_2^{\pm} \cos \beta \end{pmatrix}$$

	ф1	ф2
Туре I	u,d,l	
Type II	u	d,l
lepton-specific	u,d	l l
flipped	u,l	d

ullet Parameters (CP-conserving, Z_2 Symmetry)

$$m_{11}^2, m_{22}^2, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$$

 ν , tan β , α , m_h , m_H , m_A , $m_{H^{\pm}}$ 246 GeV

Soft Z_2 symmetry breaking: m_{12}^2

Constraints: theory

- Perturbativity
- Stability of the potential
- Unitarity of the scattering matrix

$$\cos (\beta - \alpha) = 0,$$

 $m_{\Phi} \equiv m_H = m_A = m_{H^{\pm}}$

$$\lambda v^2 \equiv m_{\Phi}^2 - m_{12}^2 / s_{\beta} c_{\beta}$$

2HDM: Tree Level

2HDM Type-II

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$-\sin\alpha/\cos\beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$

1709.06103: J.Gu, H.Li, Z.Li, S.Su,WS

Alignment limit : $cos (\beta - \alpha) = 0$ g(2HDM) = g(SM)

Not the latest report data, for more please check

Type-II: Tree + Loop + degenerate

Type-I

	Model	κ_V	κ_u	κ_d	κ_ℓ
	2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
1	2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$-\sin\alpha/\cos\beta$
	2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
	2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$

2HDM under Higgs+Z observables

Type-I: mH=800 GeV, $\cos (\beta - \alpha) = 0$, $\tan \beta = 1$

Summery

1. Loop effects are important under Higgs precisions

2. Higgs+Z precision together constrain mass splitting better

Thanks for your attention!

2HDM: Tree Level

2004.04172 F.Kling, S.Su, WS

	Current					CEPC FCC-ee					ILC					
	σ.		correla	tion	σ		correla	tion	σ		correla	tion	σ		correla	tion
	σ		T	U	(10^{-2})	S	T	U	(10^{-2})	S	T	U	(10^{-2})	S	T	U
S	0.04 ± 0.11	1	0.92	-0.68	1.78	1	0.999	-0.982	0.32	1	0.999	-0.842	3.41	1	0.998	-0.971
T	0.09 ± 0.14	_	1	-0.87	2.52	_	1	-0.986	0.46	_	1	-0.844	4.79	_	1	-0.977
U	-0.02 ± 0.11	_	_	1	1.80	_	_	1	0.38	_	_	1	3.45	_	_	1

Further study

**Discovery potential + distinguish models

